
Choosing the Right Database: OpenBase SQL

Choosing the Right Database
The Case for OpenBase SQL

What are you looking for in a database? Reliability? Performance?
Ease-of-use? A proven track record? An affordable price? Low
cost-of-ownership?

This paper provides guidance on what features and “gotchas” to look for when
choosing a database and database vendor.
It also describes the advantages offered by the OpenBase SQL relational
database and how it compares to other database offerings.

The ACID Test
A.C.I.D. stands for Atomicity, Consistency, Isolation and Durability – four standards which
every database should meet, but few actually do.

While A.C.I.D. compliance is not the only consideration in choosing a database, it‘s a good
place to start in comparing your database choices.

Here is a quick definition of each term:

 Atomicity – All database modifications must follow an “all or nothing” rule in which each
transaction is “atomic.” That means that if one part of the transaction fails, the entire
transaction fails. No splitting of atoms allowed! It is critical that the database
management system maintain the atomic nature of transactions in spite of any DBMS,
operating system or hardware failure.

 Consistency – Only valid data is written to the database. If, for some reason, a
transaction is executed that violates the database’s consistency rules, the entire
transaction will be rolled back and the database will be restored to a state consistent with
its rules. Transactions that successfully execute always take the database from one state
that is consistent with the rules to another state that is also consistent with the rules.

 Isolation – Multiple transactions occurring at the same time will not impact each other’s
execution. For example, if Joe issues a transaction against a database at the same time
that Mary issues a transaction, both transactions will operate on the database in an

Choosing the Right Database: OpenBase SQL

isolated manner. That is, the database either performs Joe’s entire transaction before
executing Mary’s, or vice-versa. This prevents either transaction from reading
intermediate data produced as a side-effect of part of the other’s transaction that will, in
the end, not actually be committed to the database.

 Durability – Transactions committed to the database are never lost. Durability is ensured
through the use of database transaction logs that facilitate the restoration of committed
transactions in spite of any subsequent software or hardware failures.

Databases with A.C.I.D. Compliance
Complete A.C.I.D. compliance is actually relatively rare among the database offerings on the
market.

Sybase, Oracle, Postgres and OpenBase SQL have solid strategies for fully complying in all
four A.C.I.D. areas; SQLite and MySQL do not. And, since Real SQL Server is based on
SQLite, it also does not fully comply.

Fault Tolerance and Durability
Choosing a product with a built-in and automated capability for avoiding data-loss is critical,
both in preventing the costs of data loss and in lowering the costs of running the database.
Most databases lack durability primarily because they have no effective strategy for dealing
with random access files, in which corruption can sometimes be unavoidable.

In fact, file corruption happens more frequently than most operating system vendors would
like you to know. The sophisticated caching in today’s modern operating systems and
hardware enhances performance, but it also compounds the challenge of designing reliable
databases.

The most common cause of file corruption is an unexpected shutdown or a system freeze-
up. Database systems are more prone to failure under these circumstances, because they
write to disk more frequently than most other applications. If a write is interrupted by a power
outage or system crash, it can result in a corrupt write or even a truncated file. A partial write
or a truncated file can be devastating to your company data.

Hard disk RAID alone cannot solve the problem. While RAID does guard against a complete
hard drive failure, RAID often just duplicates corrupted data — giving database owners a
false sense of security.

Good database durability starts with the assumption that random access files will be
corrupted; and that, when they do, the database software needs to be able to detect
problems and take action to guarantee that files can be accurately rebuilt.

OpenBase SQL does this automatically. Sybase and Oracle require a database
administrator to monitor the database. Other databases, including MySQL and SQLite, are
missing this level of fault-tolerance entirely.

OpenBase SQL Journaling  Keeping data safe

OpenBase SQL employs a multi-file journaling system that delivers reliability through a
foolproof mechanism for addressing the common forms of file corruption.
Here’s how it works: OpenBase SQL simultaneously maintains both a master and working
copy of database data, along with a realtime journal, which tracks all changes. Changes are

Choosing the Right Database: OpenBase SQL

flushed to the journal as transactions commit, followed soon thereafter by batched flushing of
changes to the working random access files.

Since an incomplete write can corrupt random access files, OpenBase SQL uses the journal
as a safeguard to ensure that, if file corruption occurs, the random access files can be
completely rebuilt from scratch

In the case where a database needs to be rebuilt, OpenBase SQL combines the master copy
with the transaction journal to bring the database back to its most recent state. In this way,
OpenBase SQL provides a redundant and automatic system that keeps data safe.

In addition to maintaining data integrity, this journaling approach eliminates the need to
perform many random access writes at commit time. Instead, changes to the work files can
be safely batched, resulting in significantly faster database performance.

OpenBase SQL databases perform journaling tasks transparently and automatically.

How do other databases compare?

While there are a variety of approaches to the problem of avoiding data corruption, many are
flawed or require intervention from a database administrator — both of which can be costly.

Sybase and Oracle use a journaling mechanism similar to OpenBase to ensure data
integrity. However, they also require a database administrator (DBA) to periodically empty
journal files and increase database partitions as needed. That’s because the journal files
used by Oracle and Sybase are fixed in size and cannot grow without intervention. When
the space fills up, the databases stop working until someone services it. While this may be
acceptable for companies with their own in-house database administrator, it is not a realistic
option for businesses with applications requiring turn-key and unattended database
operation.

At the other end of the spectrum are open source databases. MySQL was originally
designed without any mechanism to prevent or correct data corruption due to operating
system failures. But as customers began to lose data  as well as their confidence in
MySQL  file mirroring was added. While mirroring provides backup benefits similar to soft-
RAID, it also significantly degrades performance. And while mirroring reduces the chance of
file corruption, it does not eliminate it entirely, because random access files, which are prone
to corruption, are still used for the mirrored copies. Database clustering, where databases
are clustered between two servers, appears to be the only option for MySQL users requiring
real durability. But with a price tag of $13,000 for MySQL clustering software, fixing the
shortcomings of MySQL may not be an affordable option.

Postgres has added a write-ahead log to address reliability issues. It operates on the same
principle as a journal, except that the log is written before SQL is evaluated, rather than as
the transaction commits.

SQLite is a free, open-source database, which lacks most of the features of a relational
database, including protections against data loss. Even so, it is widely used for applications
that do not require reliability. If you choose this database product, keep frequent backups.
There is no durability built into SQLite.
In an effort to add some durability to SQLite, Real SQL Server now offers an SQL log so that
the database can be restored from a backup if the main files become corrupt.

FileMaker does not have any type of log or journaling and is prone to file corruption. Loss of
data is a frequently heard complaint from FileMaker users.

Choosing the Right Database: OpenBase SQL

Transaction Support
The attributes of atomicity, consistency and isolation are inseparable from a database’s
ability to provide transaction support.

Atomicity ensures that transactions either totally commit or they roll back. Consistency rolls
back transactions that violate database rules. Isolation means that the database serializes
transactions so they can operate without interfering with one another.

Databases that do not support transactions cannot offer A.C.I.D. compliance. And databases
without A.C.I.D. compliance cannot support transactions.

Transaction support also ensures that complex data sets are saved correctly. A good
example of a complex data set is in an accounting application where a credit to one account
debits another. Wrapping both of these operations inside a single transaction ensures that
either both succeed or neither succeeds.

Without transaction support, a system failure or other interruption could result in one account
being credited without the corresponding accounts being debited  and no way to know of
the disparity.

Transaction support is especially critical in a relational database system where typically large
networks of records relate to other records.

OpenBase SQL Transactions

All OpenBase SQL databases support transactions, so that either the entire transaction
commits or it is entirely rolled back. This includes sets of changes, so that when a change
successfully commits, you are guaranteed that all of the interrelated changes have been
made to the database.

Power, network or other outages that occur during or immediately after a transaction cannot
affect the consistency of data on an OpenBase SQL database. This is doubly true, because
OpenBase databases ensure transaction atomicity, consistency and isolation at the data-file
level as well as at the transaction level.

How do other databases compare?

Most SQL databases these days support transactions by default. However, there are a
variety of differences in implementation.
As noted, there are actually two levels which affect fault tolerance and transaction control.
Some databases implement transactions in memory, but still rely on the file system, which
may not ensure atomicity across the complete set of changes. Interrupting the process of
making changes during a commit can sometimes lead to inconsistent databases or
corruption. Any database that does not use a journal runs this risk.

Sybase, Oracle, Postgres and OpenBase SQL offer fault-tolerant transactions on this level.

MySQL has only added transaction support relatively recently. Their implementation
requires users to use a special mode which compromises MySQL’s otherwise good
response time. MySQL does not use a journal and so is subject to failure when interruptions
occur. Products like FileMaker do not support transactions.

Choosing the Right Database: OpenBase SQL

Performance Benchmarks
While performance is not one of the requirements of the A.C.I.D. standard, it is an important
factor to consider in choosing a database.

While good performance is essential, we caution the reader not to over-value it. One way to
improve performance is to sacrifice features such as transaction support and fault-tolerance.
For most applications this is a mistake. A few milliseconds of performance gain will not
matter if your database can not survive a system crash. All database services and
capabilities must be assessed and evaluated against requirements to determine the right mix
of fault-tolerance, usability and performance for your application or business.

About the benchmarks

The benchmarks above measure how databases perform out-of-the-box.

While a seasoned DBA could probably tweak all of these products to get more performance,
the average small to medium-sized business does not have a DBA.

The full value of OpenBase SQL is that you get great performance without an expert on-hand
to tune and maintain your databases.

The benchmarks were performed by a seasoned consultant with 12 years of Sybase
experience. Great care was taken to make sure each database had the exact same data
and indexes. Tests were performed on the exact same hardware.

The first test, insertion of 100,000 records, measures both the performance of the server and
the latency of the communication. Both are important metrics in real-life application
performance and user experience. Round-trips to the database affect all SQL operations.

The three final tests were performed using a single SQL statement to compare raw server
speeds. Since only one round-trip is made in each of these tests, network and
communication latency become much less of a factor.

While OpenBase SQL beats both open source and costly “big iron” databases in
performance comparisons, it is important to note that it also consistently outperforms these
solutions in the areas of customer satisfaction and low cost-of-ownership. While these

Choosing the Right Database: OpenBase SQL

factors are harder to quantify with numbers, they can be just as important, or often, even
more important, in supporting a business and achieving its goals.

Scalability
Besides out-of-the-box performance comparisons, it is important to consider the ability of a
database to scale simply and transparently to handle user, data and application growth.
The performance and scalability features built into OpenBase SQL include:

• Variable Length Records
Automatic compression of blank space in record data makes data files small and
compact. Since blank space is removed, reads are smaller, making file access
performance considerably faster.

• Multi-Threaded Server
Simultaneous processing of queries ensure that client applications never have to wait.

• Index Data Clustering
Performance is improved by placing information likely to be retrieved together on the
same disk pages.

• Optimized Index Maintenance
Index changes are made with a single maintenance pass, delivering unbeatable
response time. In contrast to databases that perform index insertion and maintenance
each time a row is inserted or updated, OpenBase SQL caches index changes until the
server is idle or the indexes are needed. Since even a thousand inserts on an
OpenBase SQL database require only a single maintenance pass on each index, the
performance gains can be tremendous.

• Data Page Caching
Sophisticated page caching statistically reduces the number of reads and writes, further
boosting performance.

Database footprint

File size and growth of files are key considerations when it comes to scalability. Prospective
customers often ask about file size because their existing databases have grown to be quite
huge. But database size has as much to do with database design as it does with the data
itself.

Most databases are designed around fixed file offsets, which make it easy to calculate the
location of data given a specific record number. For example, if you have a fixed record size
of 200, and you need record 10, the record is located at position 2000 (10 X 200).

The problem with this fixed approach is that data files quickly grow out of control, since every
record stored takes up the same maximum amount of room on the disk. With fixed file
offsets, application designers have to be very careful to restrict the maximum length of
record values to conserve space.

OpenBase SQL’s dynamic variable length records

In contrast, OpenBase SQL databases use a variable length record technology that
eliminates blank space and compresses record size. With blank spaces accounting for as
much as 80% of the space with some database products, variable length records permit
OpenBase SQL files to be considerably smaller.

Choosing the Right Database: OpenBase SQL

How do other databases compare?

We can give a concrete example of the advantage of a variable length record. After a few
attempts to complete the benchmarks on Sybase (see page 6), our Sybase expert had to
increase the size of the log device to 500 MB and the storage device to 200 MB, for a total
footprint of 700 MB.

In comparison, OpenBase SQL’s dynamic footprint and variable length records completed
the tests with less than a 20 MB database footprint  while also providing significantly better
performance. The numbers speak for themselves.

The next time a database vendor promotes their ability to support terabyte databases  you
may want to question whether this is an excessive requirement brought on by poor database
server design.

Some databases also require pre-allocation of database files, which can, again, be
problematic for businesses that do not have a database administrator.

The truth is that no one really knows how large your database will become, so if you need a
database expert on-hand to increase the size of your files when you don’t guess correctly,
and you don’t have one, you will have a problem.

In contrast, OpenBase SQL automatically expands and contracts — without any downtime
required. Of the SQL databases mentioned in this paper, only OpenBase offers variable
length records with no pre-allocated space requirements. This is exactly what businesses
need to lower ongoing IT costs.

Multi-Threading

Multi-threading is another important feature to look for when assessing database
performance and scalability. Multi-threading enables a database server to perform multiple
operations at exactly the same time and is essential for most applications with multiple users
 or any application expected to grow to support a multiple users over time.

A multi-threaded database server enables a database to take full advantage of multiple
processors and multiple processor cores. For example, it can run multiple queries
simultaneously on different processors and cores at the same time.

Some databases create separate processes to try to improve scalability. But because each
request must still be queued up and performed serially, one after another, non-multi-
threaded databases are virtually unusable for multi-user systems or for Web sites receiving
any type of significant traffic. Without the ability to process multiple requests
simultaneously, a long query made by one user will block shorter queries and the database
becomes a major bottleneck.

In a multi-threaded environment, however, A.C.I.D. becomes more complicated to
implement. Inserts, updates and deletes must happen simultaneously in isolation, yet they
also need to be “serialize-able” so that transactions maintain atomicity. Deadlocks can occur
when, in the process of serializing multi-threaded operations ‘impossible situations’ develop
as different threads wait for one another to release resources. The result? Clients left
hanging in a deadlocked state. Deadlocks are a common problem in database design and
not easily solved.

Choosing the Right Database: OpenBase SQL

How do databases compare?

Sybase, Oracle and OpenBase SQL all provide multi-threaded access. Oracle, however,
offers it only in their higher priced licenses. Postgres is not multi-threaded, but creates a
completely new process for each thread it needs to execute at the same time.

MySQL, SQLite and FileMaker are single-threaded, so requests are queued and processed
one after another. This creates the potential for serious bottlenecks in multi-user
environments.

Among the databases that offer multi-threading and A.C.I.D. compliance, there are different
strategies for handling serialization and avoiding deadlocks. Oracle is has a reputation for
deadlocking. However, transaction modes can be tweaked by a knowledgeable Oracle
database administrator to help avoid them. Nevertheless, there is a cost to figuring out what
customization which will work for each situation. Sybase and Postgres address the
challenge in a similar way.

In contrast, OpenBase SQL takes a unique approach to avoiding deadlocks. It uses a
mechanism that transverses the complex tree of dependencies between transactions
competing for the same resources, detects deadlocks and resolves them by forcing one of
the transactions to roll back. This avoids the possibility of users waiting for interdependent
transactions that will never commit.

Database Clustering

The ability to cluster a database — or replicate the same database on multiple servers —
has many benefits. Database clustering can be used to provide complete redundancy and
100% uptime, with automatic failover of applications to a second database when a primary
database goes down. Mirroring a database in two different locations provides uninterrupted
database access if a site goes down. Remote database mirroring can also be used to
provide faster database access in locations with slow or unreliable communication links.

Clustering is a powerful concept, but not all implementations of database clustering are the
same. Indeed, there are as many clustering approaches as there are databases. Initial
costs vary widely  and for those database providers that leave many of the practical
aspects of clustering up to application developers, the on-going costs and complexity can be
considerable. Simply put: any clustering issue not addressed in the design of the database
will require the application designer to do the necessary programming to make it work.

Primary key generation, for instance, can be a serious problem in clustered databases. A
primary key is a value generated by the database to uniquely identify a record. If the
connection between clustered databases goes down and they continue to operate
independently, each database may generate the same primary key and use it to insert a
different record at each location. If this happens, the cluster will fail completely when the link
comes back up and the keys conflict. OpenBase SQL database clustering addresses this
issue. Other databases don’t.

Another often-overlooked issue is auto-failover, or the ability for clients to automatically
connect to a second database server when the primary server goes down. For most
databases this is not automatic, so application programmers need to build failover into their
applications. With OpenBase SQL database clustering, however, failover is automatic and
does not have to be addressed by the application.

Choosing the Right Database: OpenBase SQL

OpenBase SQL database clustering

OpenBase includes clustering at no additional cost with all of its Power Center licenses.
OpenBase SQL database clusters are easily set up, using the Database Configure panel in
the OpenBase Manager application.

To address the primary key issue, OpenBase SQL automatically generates different ranges
of keys for different databases in the cluster. If connections go down, databases can operate
safely and independently until communication is restored.

OpenBase makes failover transparent and consistent across applications by embedding
automatic failover into all OpenBase SQL database APIs. As a result, when an
application loses the connection to the primary database server, the interface
automatically establishes communication with the secondary server. As a result, all
OpenBase SQL database applications will automatically fail over, out-of-the-box, and
application designers don’t have to design their applications with failover in mind.

How do other databases compare?

Both Oracle and Sybase offer database clustering, but at a huge additional cost. Both also
offer failover, but, in both cases, application designers have to implement the failover in their
program code. It is not automatic.

MySQL offers a clustered database solution offered by a third-party company. The cost is
$13,000 for the software, not including the support needed to get it running. Postgres does
not have a database clustering option.

Database clustering, with its full redundancy and potential to delivery 100% uptime, can be
critical to protecting your data and your business. But unless your database proactively
addresses issues to make clustering simple and affordable, the costs — from initial
purchase price, to licensing, through set up and implementation, to day-to-day administration
 can quickly add up and even become a liability.

Database Synchronization

Database synchronization can be another critical consideration in choosing the right
database for your business. Synchronization reconciles and merges differences between
the tables of databases that frequently operate offline and independently of one another.
Synchronization differs from clustering in that it does not execute the same SQL operation on
both servers  it compares the data to make them the same.

A good example of an application requiring database synchronization is one used by a
mobile sales force. When salespeople are out of the office calling on clients, they use an
offline copy of their database on their laptops. When they return, they press a button and
any changes are synchronized with the company database.

OpenBase SQL database synchronization

OpenBase uses both time stamps and special primary key generation to synchronize
databases with minimal effort and overhead.

Choosing the Right Database: OpenBase SQL

How do other databases compare?

Databases that lack built-in features for database synchronization force application
developers to build synchronization into their applications, which adds unnecessary
complexity, risk, overhead and cost.

MySQL, Postgres and Oracle do not offer anything like the synchronization features built into
OpenBase SQL. Sybase offers a form of synchronization, but it requires a significant
additional costs and, often, even then, some modification of application software.

OpenBase provides a complete solution that takes the work out of building and managing
applications that require database synchronization. The primary key system in OpenBase
makes it possible to run databases independently without causing conflicts when they
synchronize.

Database Security
Database security is a growing concern for companies with mobile users and remote office
locations. While most databases have some level of access control built in, communication
security is often overlooked.

As a result, many companies hire consultants to set up a virtual private network (VPN) or use
signed certificates to strengthen communication security. In addition to added expense,
these approaches become problematic if users need to access the database from public
places with limited VPN access.

OpenBase SQL Security

OpenBase SQL addresses the issue through always-on encryption for secure database
access, from anywhere, anytime. OpenBase uses the Diffie-Hellman (D-H) key exchange
cryptographic protocol, which allows communications to be established securely over an
insecure public network. D-H key exchange provides the basis for a variety of authentication
protocols, including SSL and SSH. OpenBase uses this same trusted protocol to provide
secure access to data — without having to configure a VPN.

How do other databases compare?

Most databases offer user password protection or some sort of encryption of data on the
server. Other than OpenBase, however, none of the databases compared in this paper have
encryption turned on by default. Postgres does offer SSL encryption as an option.

Hidden Costs

When comparing databases, it is important to remember that in addition to purchase price,
there is a very real cost to any break-down your business suffers because of some defect of
the database. And there is a very real cost every time you must call in a database consultant
to fix or maintain something that should never have broken or required maintenance in the
first place.

Perhaps the most important question to ask in choosing a database is: “What business are
the proponents or providers of this database in?”

The answer to this question will often reveal hidden costs that go far beyond the purchase
price.

Choosing the Right Database: OpenBase SQL

The truth is that many database providers  and the consultants who recommend their
products  have little incentive to deliver a database that is self-maintaining. They make
money from ongoing configuration, tweaking, administration and other services just to keep
databases running. Difficult-to-use databases may be great for consulting job security and
service revenues, but they are not in the best interest of the businesses that depend on
them.

We hasten to add that there are many ways that consultants can — and do — add
tremendous value. Indeed, we work with consultants all the time who make critical
contributions in areas such as software design, application support and business process
improvement. In fact, these consultants recognize and appreciate the advantages of a
database that takes care of itself — and use it to help their clients shift their investment from
database maintenance to business innovation.

What’s the real price?

When you consider the potential business impact of database problems — along with the
practical issues of database licensing, implementation, maintenance and support — it turns
out that:

 Open source databases are not free! Lost data, consulting and support fees cost money!

 The actual cost of Sybase, Oracle and Postgres go far beyond licensing! Database
administrators and consultants are expensive!

 In Conclusion

As different as they may be in some ways, “big iron” and open source databases have
one thing in common – they’re complicated to set up and maintain – and that costs you
money, again and again, in consulting fees and services.

What’s more, many open source databases put your data at risk through a lack of
important fault-tolerant design features — and the consequences of lost or corrupted
data can be very expensive indeed.

For these reasons, we encourage you to think twice before entrusting valuable company
data to a “free” alternative  or before putting it in the hands of expensive database
administrators.

With OpenBase SQL, it is possible to choose an affordable, proven database that
protects your data, minimizes maintenance and, ultimately, lowers the total cost of
running your business. OpenBase SQL is open source, but it isn’t free. That’s because
our business is to design and deliver the best possible database solution — and be paid
fairly for it.

When you consider the impact of database problems on your business and the ongoing
costs of data base administration, consulting and support on your bottom line, we
believe you will see that:

 OpenBase SQL is a good value

 Consultants who recommend OpenBase SQL are committed to making your solution
as stable, reliable and maintenance free as possible

Experience the difference. Try OpenBase SQL today.

Choosing the Right Database: OpenBase SQL

More information
To find out more about OpenBase SQL, visit: http://www.openbase.com

OpenBase is a registered trademark of OpenBase International, Ltd. All other product names mentioned herein may be
trademarks or registered trademarks of their respective companies. OpenBase International shall not be liable for
technical or editorial errors or omissions contained herein. The information in this document is subject to change without
notice.

© 2009 OpenBase International, Ltd.

